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Abstract

A parameter-free geometric model for nuclear ab-

sorption is derived herein from microscopic theory.

The expression for the absorption cross section in

the eikonal approximation, taken in integral form, is

separated into a geometric contribution that is de-
scribed by an energy-dependent effective radius and

two surface terms that cancel in an asymptotic series

expansion. For collisions of light nuclei, an expression
for the effective radius is derived from harmonic os-

cillator nuclear density functions. A direct extension

to heavy nuclei with Woods-Saxon densities is made

by identifying the equivalent half-density radius for
the harmonic oscillator functions. Coulomb correc-

tions are incorporated, and a simplified geometric

form of the Bradt-Peters type is obtained. Results

spanning the energy range from 1 MeV/nucleon to

1 GeV/nucleon are presented. Good agreement with

experimental results is obtained.

Introduction

The nuclear absorption cross section is a mea-
sure of the sum of all the reaction processes induced

during nuclear collisions. This metric is applied

widely in such diverse fields as fundamental nu-

clear physics, the study of radiation effects on living
cells, and radiation-shielding design for future space-

exploration vehicles (ref. 1).

In recent years, considerable advancements in

both the theory (refs. 2-19) and experimental meth-

ods (refs. 20-26) of this fundamental observable have
been made. Most significantly, the energy varia-

tions of the absorption cross sections for all nuclei in

the intermediate-energy range from 10 MeV/nucleon

to 1 GeV/nucleon are qualitatively similar and
can be related to the underlying two-nucleon inter-

actions. At energies above 1 GeV/nucleon, the ab-

sorption cross section is essentially constant and ap-

proximately equals the total geometric cross-sectional

area of the projectile-target system; this consistency
allows an extension of the geometric model and its

parameterized forms (refs. 13-17, 25, and 26) to the

entire intermediate- and low-energy range. The geo-
metric formula provides a quick method for the cal-

culation of the absorption cross section and is highly

desirable for inclusion in radiation-shielding trans-

port codes.

Microscopic formulations are based on the quan-
tum collision theory of many-body composite sys-

tems. The solution of this complex problem can be

approached with the methods of Glauber (ref. 2),
Watson (ref. 3), Feshbach (ref. 3), and the KMT ap-

proach (ref. 4). Wilson (ref. 5) extended the Watson

formalism of nucleon-nucleus collisions to nucleus-

nucleus collisions, from which the cross sections in

the eikonai approximation can be obtained. These

solutions, which are generally solved by numerical

methods (refs. 5 and 6), are given in integral form.

Closed-form solutions for the microscopic theory

have been obtained for the simplest case of Gaussian

nuclear density distribution (refs. 7 and 8). The

solution applicability to the more realistic density
distribution of the Woods-Saxon form is based on

matching equivalent Gaussian forms to the surface

densities of heavier nuclei. This approach is suc-

cessful because the energy dependence for the trans-

parency is largely a function of the low-density sur-

face region with a saturated, absorptive inner core
that remains essentially energy independent.

The purpose of this paper is to derive a geomet-
ric formula, valid for both light and heavy nuclei, for

the nuclear absorption cross section from the micro-

scopic formulation. This effort will be accomplished

by separating the integral expression for the absorp-
tion cross section in the eikonal approximation into

an effective geometric radius and two surface com-

ponents that approximately cancel in the asymptotic

expansion.

The concept of the effective radius in microscopic

formulations is not new (refs. 8 and 9). However, in
all previous works the contributions beyond a cutoff

radius are negligible, whether the effective radius

is defined at half-absorption density (ref. 8) or at
a distance of one mean free path from the surface

(ref. 9). In this work, however, the effective radius at
half-absorption density has a precise definition such

that the transparency within this radius cancels the

absorptive contribution from the outer region.

A summary of the format for this paper is pre-

sented. In "Theory," the results from the micro-
scopic theory are reviewed and developed into a geo-

metric formalism. In "Application to Light Nuclei,"
a method is illustrated for harmonic oscillator mat-

ter densities that are applicable to light nuclei. Ex-
pressions for the eikonal phase shift and the total

absorption cross section are derived for the nucleon-
nucleus as well as for the nucleus-nucleus inter-

actions. An exact formula for the effective radius

at half absorption is derived, and its first approxima-

tion is used to evaluate explicitly the geometric term

and the surface contributions. Results comparing ex-

periments for energy values from 50 MeV/nucleon

to 1 GeV/nucleon are presented. Also, a simpli-
fied version of the expression for the effective radius,

which is used in the rest of the sections, is given.

In "Extension to Woods-Saxon Densities," a direct



extensionoftheexpressionmentionedaboveismade
fortheheavierfiucleidescribedbyWoods-Saxonden-
sity distributions. In "CoulombInteractions,"the
effectsof Coulombdeflectionsareincorporated,and
resultsforlight- andheavy-ionprojectile-targetsys-
temsspanningtheenergyrangefrom1MeV/nucleon
to 1 GeV/nucleonarepresented.In "Bradt-Peters
Form,"theexpressionsarefurthersimplifiedandthe
resultscomparedwith thoseof theprevioussection.
In "Nuclear-MediumEffects,"commentsaremade
on nuclear-mediumeffects. "ConcludingRemarks"
summarizesthesuggestionsforimprovementsubmit-
tedherein.

Theory

Microscopic Theory

Thenuclearabsorptioncrosssectionin theeikonal
approximationis givenby

O0
aab s = 21r {1 -- exp[--2Im X(b, e)])b db (1)

where Im denotes the imaginary part of the complex

phase shift X(b, e), which is a function of the impact

parameter b and energy e, and can be derived from
a multiple-scattering series expansion for the optical

potential (refs. 5 and 6). Within the Watson form
of impulse approximation, when the propagator G is

replaced by the free PrOPagator Go (ref. 5), the phase
shift is given by

2 2

f dziX(b, e) = k(Ap + AT)
?7 : :

× i oyop(b+z+y+¢)t(e,y) (2)

where k is the wave number of the projectile, Ap

and AT are the mass numbers, and pp and PT are
the projectile and matter densities; t(e,y) signifies

the two-body transition amplitude for free nucleons
as follows:

y2x exp 2B(e)
(3)

Here, e is the two-nucleon kinetic energy in the

center-of-mass (cm) frame of reference, m is the

nucleon rest mass, _(e) is the isospin-averaged total

nucleon-nucleon cross section, B(e) is the averaged

slope parameter, and a(e) is the averaged ratio of

2

the real to imaginary components of the forward-

scattering amplitudes.

Geometric Model

A geometric formula for the absorption cross sec-

tion of high-energy nuclear collisions is given by the

Bradt-Peters form (ref. 2),

O'abs = 7r (Rp + RT - 60) 2 (4)

where Rp and RT are the radii of the projectile and
target nuclei and 6o is a constant. If 6o is small com-

pared with the radii, the formula shown above implies
an annular region of transparency for peripheral colli-

sions. To show that this form may indeed be derived

from microscopic theory, the integral given in equa-

tion (1) is separated at an impact parameter Re as
follows:

R_aabs = 27r {1 - exp [-2Im)_(b, e)]} b db

+ 2_r {1 - exp [-2ImX(b, e)]} b db

= - + 62 (5)

such that 61 and 62 are the small surface contribU-

tions given by

_61 = 2_" exp [-2ImX(b, e)] b db (6)

and

62 = 21r {1 - exp [-2ImX(b, e)]} b db (z)

Appendix A includes the asymptotic series

expansions,

and

exp[-X1 (Re, e)]

61 ,_ 27rRe _ e-_l- _
(s)

- exp I-X1 (Re, e)]} 2

62 "_ 27rRe {1 bXll (_ _R_ exp[Xl(Re, e)]

(9)

where

Xl(b, e) = 2ImX(b, e) (10)

Notethat 62 can also be expanded into a conver-
gent Taylor series, provided that X l (b, e) < 1 beyond



Re and that, in the first approximation, 62 is given

by

62 ,_ Xl(b,e)b db (11)

From equations (8) and (9),

62 - 61 = 2rRe6(Re, e) (12)

where

_(Re,e) = exp[Xl(Re,e)] {1- 2exp[-Xl(Re, _)]}
oxl(b, _)/Obl_

(13)

Hence,

aab s = 7rR 2 - 27rRe6 (Re , e)
(14)

_[Re- _(Re,_)]2

If the integration limit Re is the sum of the projec-

tile and target radii, the required geometric formula

shown in equation (4) is obtained. However, for con-
venience, Re can be chosen such that 6 is identically
zero. When this condition is valid, equation (13)

shows

exp[-X1 (Re, e)] = 0.5

or

Xl(Re,e) = In 2 (15)

That is, Re is chosen at half transparency or, equiv-
alently, at half absorption. (See fig. 1.) The trans-

parency function T is

T = exp[-Xl (b, e)] (16)

and the absorption function A = 1 - T. With 5 = 0,

_abs= _R_ (17)

where the effective radius Re is now a function of

energy. This equation gives the desired geometric
formula for the nuclear absorption; Re is derived

from equation (15). However, a more appropriate

formula for Re can be derived in terms of the classical

geometric radius Rg, which is defined as Re--.c¢.
Note that at the high-energy limit, as e _ oc, the

wavelength of the projectile nucleons is sufficiently

small compared with the nuclear dimensions, and the
effective radius assumes the classical geometric radius

Rg, given by

Rg = ro (A_ 3 + A1T/3) (18)

where ro is a variable determined by the condition

Xl(Rg, _) = In 2 (19)

such that 6 = 0 is satisfied. The effective radius Re

at an arbitrary energy e can then be related to the

geometric radius Rg by equating

x, (Re,e) = x_(ng, c¢) = In 2 (20)

This relation is useful only if an algebraic expres-

sion for X(b, e) is known. For Gaussian and harmonic
oscillator density functions, X(b, e) is readily obtained

by the methods in "Application to Light Nuclei."

Application to Light Nuclei

In this section, the phase-shift function X(b, e) is

derived from the harmonic oscillator density func-

tion, which is applicable to light nuclei for A _< 16.

Also, an exact expression for the effective radius is
obtained. The nucleon-nucleus and nucleus-nucleus

collisions are treated separately.

For the nucleon-nucleus collision, the nucleon

density is simply

p(:- :_')= _(_:- x') (21)

because the nucleon wave function has been effec-

tively incorporated into the two-body transition am-

plitude t(e,y), and the nucleus charge density is

given by

(x2)pc(x)=p o l+o'_-_ exp--_-_ (22)

where 7 and a fm (1 fermi = 1 x 10 -15 m) are
constants taken from reference 27. The expression for

X(b, e) is derived in appendix B and has the following
form for the nucleon-nucleus system:

Xl(b,e) = fl(e)(al Ta2b2) exp[-P(e)b2] (23a)

and for the nucleus-nucleus system:

Xl(b,e) = fl(e)(al + a2b 2 + a3b 4)\ exp[- P(e)b 2]

(235)

where explicit expressions for the functions fl (e) and

P(e) and for the constants al, a2, and a3 in each case

are given in appendix B.

Figure 2 displays the absorption function

A = 1 - exp[-Xl(b, e)] (24)

as a function of the impact parameter b, for 4He-4He

and 160-160 systems, at an energy of 2 GeV/nucleon,

which is taken as the geometric limit. The position of

the effective radius Re that is defined at T = A = 0.5



isalsoindicated. Note that even within the geometric

limit, considerable transparency for peripheral colli-
sions occurs.

The effective radius Re for three different energy

values is shown in figure 3, where the absorption

is plotted at 50 MeV/nucleon, 250 MeV/nucleon,

and 1 GeV/nucleon for the 160-160 system. As

shown in the figure, Re passes through a minimum
and then increases as the energy decreases. The

strong absorption radius R8 is reached in the low-

energy limit. The underlying basis for this energy
dependence can be traced to the nucleon-nucleon
total cross section, which exhibits a similar trend. An

expression for the effective radius Re in terms of its

geometric value Rg is obtained from equations (23)
and the condition

X1 (Re, e) = X1 (Rg,oo)

For nucleus-nucleus collisions,

Re2= P(oc)_2 1 {ln[fl(e) ]P(e) "'g + _ Lfl(oo)J

(25)

with a similar expression for the nucleon-nucleus case

for a 3 -- 0. In the equation above, the geometric

value Rg is given by

Rg = rT All3 (26a)

for the nucleon-nucleus system and

Rg -_ rT All3 + rpA1p/3 (26b)

for the nucleus-nucleus system. The value r is deter-
mined from the condition

: X(Rg,2A GeV) = ln2

which, for the nucleus-nucleus system, is given by

Inf,(2A GeV)+ In (al +a2 R2 +a3 R4)

- P(2A GeV)R 2 = ln(ln 2) (27)

Substituting for Rg from equation (26), equa-

tion (27) is solved iteratively with an initial value
of ro = 1.0 fm. For the nucleus-nucleus system, iden-

tical target-projectile systems are considered with

r T -- rp "= ro. The resulting values for ro are plotted

Table I. Collision Values for ro

Atomic mass

number

2

4

7

9

10
11

12

14

16

>16

Nucleon-nucleus

to, fin

0.50

1.02
1.14

1.19

1.19

1.18

1.19
1.20

1.23

1.25

Nucleus-nucleus

0.47

0.85

1.13

1.17

1.16
1.14

1.13

1.16

1.21

1.25

in figure 4 and listed in table I. From equation (20),

this determination is clearly sufficient to ensure that

the condition _f -- 0 is also satisfied by the value of

the effective radius given by equation (25).

For the heavier nuclei within the harmonic oscil-
lator category, ro _ 1.2 fin; this length approximates

the generally accepted value that determines the nu-
clear radius. Clearly, the values of ro for the lightest
nuclei such as deuterium and helium are considerably

smaller than those for the heavier nuclei; this differ-

ence can be explained by examining the convolution

integral for the ph_ shift. In the_ case of Oaussjan
density distributions, the resultant width increases

by the factor (a T + a_) 1/2, whereas the total geo-

metric width is given by the sum ap 4- aT, as shown

in equation (26), where ap and a T are the widths

of the target and projectile, respectively. Hence, for
the lightest nuclei, which have near-Ganssian distri-

butions, ro must be lowered to account for this dis-

crepancy. The convolution widths for the Woods-

Saxo n forms, however, are expected to be close to
the geometric value.

The advantage of writing Re in terms of Ro, as
given in equation (25), is that in the first approxima-
tion the second logarithmic term may be neglected

when Re _ R 9, with the result

R2._ P(2AGeV) 1 , [ fl(e)
P(e) R2 + _(e) m[fl(2-A GeV)J (28)

Although this approximation offsets the condition

6 = 0, the integration limit in equation (5) is suffi-

ciently defined to evaluate 61 and 62 explicitly; the

absorption cross section is given accurately by

aab s = 7rR 2 - 61(Re, e) 4- 62(Re, e) (29)



Figures5-9 displaythe absorptioncrosssection
usingequation(29)forlight-ionprojectile-targetsys-
temsthat agreewellwith experimentaldata.These
resultsarealsoincloseagreementwith thenumerical
evaluationof theintegralgivenbyequation(1). (See
refs.5and6.)

Hereafter,the expressionfor Re from equa-

tion (28) will be used with the assumption that
(62 -61) is negligible. In equation (28), the expres-

sion P(e) for the nucleon-nucleus collision is equiva-

lent to equation (B10),

[ ]-'P(e) = a_- 2r2 + 2B(e) (30a)

and P(e) for nucleus-nucleus collision is equivalent to

equation (B17),

two-parameter Woods-Saxon charge density is given

by
pc(r) = Po

1 + exp(r--_)

where R is the radius at half density, c is related
to the nuclear skin thickness t by the expression

c = t/4.4, and po is a normalization constant. From

reference 27, the parameter c is a constant approx-
imately equal to 0.55 fm for all nuclei. Hence, we

assume that only one parameter R describes the
Woods-Saxon form.

The equivalent half-density distance R for the
harmonic oscillator function satisfies

12 = l+'y-_ exp -_- (33)

[ ]-' (30b)

where rp = 0.86 fm is the radius of the proton.

Because the slope parameter B(e) is approximately
a constant equal to 0.4 fm 2 within the energy range

considered, P(2A GeV) _ P(e); equation (28), with

Rg given by equation (26), then simplifies to

R 2 = (rTA1/3)2+ (a 2 + 0.35)g(e) (31a)

for the nucleon-nucleus collision, and

Re2 = / A1/3 ,1/3'_ 2(,rp_g + rTAT ) + (a_ + a2p) g(e) (31b)

which can be rewritten as

k = ln2 + ln(1 + "),k) (34)

where
R 2

k = -_- (35)

Equation (34) is solved iteratively for k with
an initial value of k -- ln2. The parameter k is

plotted in figure 10 as a function of atomic mass
number. For the heavier nuclei with the harmonic

oscillator density form, k _ 2 or R _ v_a. Also,

for these nuclei an equally valid description would be

the Woods-Saxon form with the half-density radius

given by R = vf2a. This equivalence suggests that
the substitution of

for the nucleus-nucleus collision, where

[ ll( ,lg(e) -- In 11 (2A GeV)J

[
In [a(2A GeV)] (32)

R
a _ --

into equations (31) can extend its range of applicabil-
ity to the Woods-Saxon densities of heavy ions with
A > 16. This substitution yields for the nucleon-

nucleus system,

The terms Ap and A T are the charge density width

parameters for the harmonic oscillator function given

in reference 27, rp and r T are the respective values

for ro given in table I, and the parameterized form

for _(e) is given in appendix C.

Extension to Woods-Saxon Densities

The Woods-Saxon density does not yield a simple

expression for the phase shift X(b,e). Therefore, a

simple modification of equations (31) is given. The

= + + 0.35 g(e) (363)

and for the nucleus-nucleus system,

I/3 rTA1/3) 21

(36b)

where Rp and RT are the half-density values for the

Woods-Saxon forms given in reference 27.



Coulomb Interactions

The derivation of the eikonal approximation as-

sumes straight-line trajectories for the projectile and
an impact parameter at the collision site that is

equal to its asymptotic value. For heavy ions at

low energy, the Coulomb force deflects the straight-

line trajectories significantly, thereby decreasing the
cross-sectional area of incident particles that actually

undergo nuclear forces. The eikonal approximation

may still be used (refs. 8, 10, and 18) if the effective
impact parameter at the collision site is the distance

of closest approach d (refs. 8 and 18), where b and d

are related by

with
ZTZpe o

Ecm

where ZT and Zp are the charges of the target and

projectile, respectively, eo is the electron charge, and
Ecm is the total center-of-mass energy.

Hence, the asymptotic impact parameter be, cor-

responding to the radial distance Re, is given by

where be now defines the integration limit for equa-

tion (5). Therefore, the Coulomb-modified geometric

formula is readily obtained as

(39)

In figures 11-21, the absorption cross section

for several light- and heavy-ion projectile-target nu-
clei is plotted with and without the Coulomb cor-

rections for energy values from 1 MeV/nucleon to

2 GeV/nucleon. The results with Coulomb correc-
tions agree well with experiment. The following val-

ues for ro (see table I) were used for nucleus-nucleus
collisions:

A=4; ro=0.56fm

7<A<16; ro =1.20 fm

A>16; ro =1.25 fm

Figures 22-26 show the cross sections for spe-
cific projectiles on various targets with and without
Coulomb interaction. The linear relationship with

atomic number is clearly evident. As expected, the

6

Coulomb corrections are more significant for heavy
ions.

Bradt-Peters Form

In the present formalism, the geometric limit for

the nuclear absorption cross section is given by

aab s = 7rr 2 (A_ 3 + A1/3) 2

compared with the Bradt-Peters form at high energy,

= + _,o)
The difference comes from the choice of to. Here,

ro satisfies the geometric criteria that are valid at

high energies and small wavelengths such that

R a = ro (Alp/3 + A_/,/3) (T = 0.5;e --* c_)

An equally valid description is to define the strong

absorption radius Rs at low energy as the reference
value such that

Rs = rs (Alp/3 + A-I-]3) (T = 0.5;e--* 0)

The strong absorption parameter rs is greater

than ro because the absorptive content of the surface

region increases at lower energies due to s-wave scat-

tering. This low-energy description results in 6o # 0

at high energy, a state that conforms to the Bradt-
Peters formula.

However, since the eikonal approximation is valid

only at high energies, the low-energy description
cannot be implemented. Also, the corrections that
show the Coulomb and Pauli correlation, significant

contributors at low energies, were not incorporated

into the phase-shift function. Hence, the choice of

the geometric limit as the reference point is justified.

The more general equations (36) for the effective

radius Re at intermediate energy will now be cast in
the Bradt-Peters form. The simplest form is obtained

for heavy ions when rT = rp = ro. Using the

parameterized form for half-density charge radius R,

given by

R : Cl A1/3-c2

with

el = 1.i8
(40)f

c2 0.48 )

ffi
i

|

|

I

?

i
!



in equations (36) and simplifying, the Bradt-Peters

form is obtained for the nucleon-nucleus system

where

r2(e ) = r2° + c_ g(e_____))
2

9(e)
6o(e) clc2

and for the nucleus-nucleus system as

with r as shown before and

A1/3 tl/3 )

_T _'P •

g(e) A /3+"P6o(Ap, AT, e) ,_ 2r-_(e) ClC2 + A1/3

where ro = 1.25 fm.

In deriving the formula above, 60 is assumed to be

much smaller than A_3"' and AIT/3.'" Note that r is now

energy dependent, which supports the observation

made by Kox et al. (ref. 25).

After the above equation is substituted into equa-

tion (39) to account for Coulomb correction, the re-

sults are compared with those of the previous section
in figures 27-30. The agreement is good for the heav-

ier as well as for the proton projectiles. The discrep-

ancy for the alpha projectiles in the nucleus-nucleus

case results from the assumption rp -- rT -- 1.25 fm
for all nuclei in the Bradt-Peters form.

Nuclear-Medium Effects

In the microscopic formulation, the two-nucleon
interaction is defined between free nucleons. This
definition excludes nuclear-medium effects from

Fermi motion and Pauli blocking. The exclusion
of these effects can be justified in both the high-

and low-energy (below 20A MeV) regimes but not

in the intermediate-energy region. At high energy,

many scattering states are available; hence, the ef-
fects of the occupied states are comparatively negli-

gible. At low energy, peripheral collisions dominate

when the nuclear overlap densities are low and when

the number of occupied states is small. Peripheral
collisions dominate at low energies for the following

reasons: the nuclear absorptive power increases due

to s-wave scattering between nucleons, and Coulomb

forces deflect the trajectories into the peripheral re-

gions. Thus, reasonably good results are obtained
with the Coulomb corrections alone. The nuclear-

medium effects should actually increase the mean

free paths (ref. 19); hence, more nuclear transparency
results. For uncharged projectiles such as the neu-

tron, these effects can be considerable, as shown in

figure 14(b).

Concluding Remarks

A parameter-free geometric model for nuclear ab-
sorption was derived herein from microscopic theory.

The expression for the absorption cross section in the

eikonal approximation, taken in integral form, was

separated into a geometric contribution that was de-

scribed by an energy-dependent effective radius and

two surface terms that cancelled in an asymptotic

series expansion.

For collisions of light nuclei, an expression for the
effective radius was derived from harmonic oscilla-

tor nuclear density functions. A direct extension to

heavy nuclei with Woods-Saxon densities was made
by identifying the equivalent half-density radius for
the harmonic oscillator functions. Coulomb correc-

tions were incorporated, and a simplified geometric

form of the Bradt-Peters type was obtained. Re-
sults spanning the energy range from 1 MeV/nucleon

to 1 GeV/nucleon were presented. Good agreement

with experimental results was obtained.

NASA Langley Research Center
Hampton, VA 23681-0001
April 23, 1993
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Appendix A

Surface Contributions to Total Absorption Cross Section

The surface contributions to the total absorption cross section, given by 51 and 52, are evaluated using the
Laplace method for asymptotic series (ref. 27)

L51 = 27r exp[-Xl(b, e)lb db

OX1 (b, e)
=2r¢ _o/t_ exp{-IX1 (Re, e) + -_ (b- Re)+...J}b db

2. _ exp[-.x__(R_,e)!
"-_Oxl(b,e)/Obl_ (A1)

Similarly,

52 -- 21r {1 - exp[-Xl(b,e)]}b db

= 2,_ exp(ln{1- e_[-X_(b,_)]t)beb

f£_' [ ° (ln(l - exp[-X_(b,_)1})(b- _) + ""] bah= 2_r exp ln{1 - exp[-Xl(R_,e)]} + _

21rR - {1 - exp{-_l(Re,e)]} 2

e exp[Xl (--Re__e)--][OXl (b, e)/cgb------_]IRe (A2)

| -

i =

l
=

i

i

!

i



Appendix B

Derivation for Phase Shift X(b, e)

Expressions for the phase shift X(b, e) are derived from the harmonic oscillator density functions.

charge density is

(x2)pc(x)=po 1+7_ exp -_

where V and a fm are taken from reference 27 and Po is a normalization factor.

The matter density is derived from the charge density (ref. 29) as

pro(x) -- po(a' + b' x 2) exp(-px 2)

where

The

(B1)

(B2)

a, a3 ( 3 3 a2_= _ _1 + _7 - _7_) (B3)

a5

b'--V 128s 7 (B4)

s 2 = a2 r 2
4 6

1

p ---- 4s 2

where rp = 0.86 fm is the radius of the proton. Nucleon-nucleus and nucleus-nucleus collisions are considered

separately.

Nucleon-Nucleus

The matter density function for the nucleon is given by

pp(x - x') = 6(x - x')

and for the target nucleus by

pr(x) = _ro(a_ + b}x _)exp(-vx _)

The phase shift is given by equation (2),

2 2

X(b,e)= ApAT /dz f d3_pT(_) f d3ypp(b+z+y+_)t(e,y)
k(Ap + AT)

Substituting for pp, PT, and t(e, y) from equation (3), the integral is easily performed, obtaining

Xl(b, e) = 2ImX(b, e) = fl(e)f2(b, e)

(B5)

(B6)

(BT)

(B8)

(B9)

where

fl (e) = ATPTOa(e) [ _(e) ] I/2 [2B(e)(p + P')] -3/2

f2(b, e) = (al + a2 b2) exp[-P(e)b 2]

9



with
b' a2

al = a' + 1.5-__-7 +
2P(e----)

12
P- b'

a2-- (pWp,)2

1

2B(e)

1

1
P(e)

4s 2 + 2B(e)

Also an expression for 52 in the Taylor expansion is derived as

[ _r 13/2 a2 +a2R2]exp[_P(e)R2e]52 = 2 [p----_j fl(e) [al + 1.5p--_

(B10)

(Bll)

Nucleus-Nucleus

The matter density function for the projectile is

and for the target is
pT(x) ----PTO(dT + biT X 2) exp(--qx 2)

which gives

x, (b,e) =/l(e)/2(b, e)

where

and

with

fl(e) = ApAT a(e)PTOPPO {2_B(e)[p + p' (e)][q + qt (e)] }-3/2

f2(b,e) = (al + a2 b2 + a3 b4) exp[-P(e)b2l

1

" = 4-_p

1

q'- 2B(e)

p'(e) = [4s 2 + 2B(e)] -1

P(e) = [4 (S2p + s 2) + 2B(e)] -1

(B12)

(BI3)

(B14)

(B15)

(B16)

(B17)

10



I 1t 1.5 I II .t I I

al = aeaT + _ taToe + apbT) +

# I
15 bTb P

4 (p + p,)2

pt2 p2t t ppt I , 3 p2+pl2

""# + apbr b'Tb'p2 (p + bTbp p,)3a2 = aTo P (p + pt)2 (p + pl)2 + pl)3 2 (p +

_.t i.i p2p,2

a3= _T_P(i'7-;)4

where a_, and b_, are the constants that relate to the projectile as given by equations (B3) and (B4) and

= o_ "YT 8S 2 16S 4 (q + ql)'

_,_a,_[i__ 1b_= °_T _ (q+q')_J

a_= a_+b_q1.S+ qt

relate to the targets.

An expression for 62 in the Taylor series expansion is derived as

I I 10., ]}52_ 2--P-_(e) al+a2 _+R 2 +a3 4P(e)2 +_+4Re 4 exp

The following integral relations were used.

i$ :("_'"('_)_'I = _ exp[_qr 2 _ p(, _ y)2] dr \ q--_] exp pTq

S# - v(.- = _° sexp[-qr 2 y)2] dr
Oq

(r - y)2 exp[_qr 2 _ p(r - y)2] dr = - 0----IOp

i ()(°)0 --_q Ir2(r _ y)2 exp[_qr 2 _ p(r - y)2] dr = - _p

An alternate partial evaluation is given in reference 30.

(B18)

(B19)

(B20)

(B21)

(B22)
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Appendix C

Parameterization for Experimental Two-Nucleon Total Cross Section

For completeness, the isospin-averaged nucleon-nucleon cross section taken from reference 1 is given. A

parameterization for the experimental two-nucleon total cross section in millibarns (1 barn = I x 10-28 m2) is

given for the proton-proton interaction by

(1÷!)(40÷100cos/010  oxo[-0  l(o-: )0   ]}(c1)

for e _> 25 MeV and for the lower energies by

app(e)=exp{6.51exp[_( e_,l_3_4]_o.7]j} (C2)

For proton-neutron interaction at e > 0.1 MeV,

anp(e) = 38 + 12 500exp[-1.187(e - 0.1) 0"35] (C3)

and at lower energies

26000exp[- ( e _0.31anp(e) _5-A_ s j
L.

The isospin average is calculated as follows: : : :

#(e) = [(NpNT + ZpZT) app + (NpZ T + ZpNT) anp] /ApAT

where A, N, and Z are the atomic, neutron, and proton numbers, respectively.

The nucleon-nucleon slope parameter is parameterized (ref. 31) as

B(e)= lO+0.51n(S_o )

(C4)

(C5)

(C6)

i
!

where s' is the square of the nucleon-nucleon center-of-mass energy and So = (1 GeV/c) -2.
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Figure 1. Absorption as a function of impact parameter for nuclear collisions. At half absorption, shaded areas
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Figure 2. Absorption as a function of impact parameter for projectile-target systems of 4He-4He and 160-160

at 2 GeV/nucleon. Terms R1 and R2 denote geometric radii for systems.
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Figure 3. Absorption as a function of impact parameter for three energy values: 50 and 250 MeV/nucleon and
1 GeV/nucleon. Corresponding effective radii R1, R2, and R3 are indicated.
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Figure 5. Variation of absorption cross section with energy for proton-nucleus collisions.
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Figure 6. Variation of absorption cross section with energy for proton-nucleus collisions.
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effects.
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